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Abstract. In this study, the acoustic radiation force resulting from the interaction of a plane progressive
wave with a coated sphere was examined. The linear acoustic scattering problem was obtained first by
solving the classical boundary conditions to obtain the required coefficients. The radiation force was then
determined by averaging the momentum flux tensor expressed in terms of the total scattering pressure or
velocity potential in an ideal fluid. Numerical calculations of the radiation force function Yp, which is the
radiation force per unit energy density and unit cross-section, were displayed versus the dimensionless size
parameter x = k1b (k1 is the wave number in the exterior fluid and b the radius of the uncoated sphere)
over a large range of frequencies. Particular emphasis has been focused on the coating thickness and the
absorption of sound inside the outer covering layer. The fluid-loading effect on the radiation force function
curves was also analysed.

PACS. 43.25.+y Nonlinear acoustics – 43.20.Fn Scattering of acoustic waves

1 Introduction

A problem of interest in the discussion of the nonlinear in-
teraction of sound waves with objects is the application of
a force (known as the acoustic radiation force) due to the
transfer of the momentum flux [1]. Moreover, intrinsically
the nature of wave motion in fluids results in a variety of
nonlinear effects that compete with the radiation force,
such as streaming. Since the work on the acoustic radia-
tion force on a rigid sphere in an axisymmetric wave field
by King [2], the radiation force on a sphere with differ-
ent mechanical properties (compressible, fluid, elastic) has
been investigated [3–8]. It has been proved theoretically
and experimentally that there appears a series of maxima
and minima in the radiation force function curves which
correspond to the resonance frequencies of the sphere’s
elastic vibrations.

Furthermore, various aspects of the acoustic radiation
force on rigid spheres were examined with particular at-
tention given to dissipation effects, such as viscous and
thermal losses [9–12]. In the presence of viscosity, one
should distinguish between the two notions: that of the
mean acoustic radiation force exerted by a sound field on
an object, and that of the total radiation force (known
as “radiation pressure”) which is the rate at which the
mean momentum transported by the sound wave changes
because of the disturbance due to the presence of the ob-
ject along the wave’s path. Only part of it contributes to
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the mean force acting on the object, while another part
is transferred into the fluid to produce acoustic streaming
with dipole-symmetry [12].

The sustained interest in these problems is due to the
importance of scattering and attenuation in many areas of
research such as acoustic levitation, contrast agent imag-
ing, and other medical applications. One of the important
applications of the radiation force on spheres is the de-
termination of acoustic intensity from the radiation force
measurement for the calibration of high frequency trans-
ducers [13].

Although the single sphere results are useful, the real
interest, as far as the previously mentioned applications
are concerned, is concentrated on coated scatterers. For
example, biological cells involve a central nucleus coated
by a cytoplasmic layer, and non-destructive evaluation
usually concerns the identification of core media within
coated objects. Human organs can also be seen as scat-
tering obstacles buried within the body, and air or water
polluants are covered by all kinds of substances. Bioactive
layered spheres are also considered to be potentially excel-
lent for delivering drugs to localized targeting sites, such
as mass lesions or tumors. Moreover, coated spheres pro-
long the circulation time in blood vessels, preventing the
drugs from dissolution before reaching the desired target.
In such a process, it is crucial to have a priori knowledge
of the radiation force on such bioactive layered spheres
in order to non-destructively guide them to the desired
location.
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The goal of the present work is to develop the theory
of the acoustic radiation force acting on coated spheres
and placed in a plane progressive sound field. The coated
spheres were assumed to be submerged in compressible
nonviscous fluids. Numerical calculations are performed to
show how the acoustic radiation force can be affected by
absorption characteristics, thickness of the coating layer,
and variations of the sphere’s mechanical parameters. The
viscoelastic layer is assumed to be ideally bonded to the
sphere. Furthermore, it is shown that the fluid-loading
drastically influences the radiation force, resulting in new
interesting effects.

2 Method

The acoustic radiation force on a coated sphere can be
calculated by integrating the time-average radiation-stress
tensor over the sphere’s surface. The radiation-stress ten-
sor is expressed in terms of the total (incident and scat-
tered) linear acoustic potential velocity or pressure fields.
It is therefore essential to calculate the linear acoustic
scattering field disturbed by the coated sphere for the pur-
pose of computing the radiation force.

2.1 Acoustic scattering by a coated sphere

In this section, the general problem of acoustic scattering
from a layered sphere immersed in a nonviscous fluid is
considered. The geometry and the coordinate system used
are shown in Figure 1. The center of the layered sphere
coincides with the origin of a rectangular coordinate sys-
tem, and the plane waves approach the sphere along the
negative z-axis.

In the exterior fluid medium (medium 1), the linearized
continuity and Euler’s equations can be written as [14]

∂ρ1

∂t
+ ρ1∇ · v = 0, (1)

ρ1
∂v
∂t

+ ∇P = 0. (2)

ρ1 is the mass density, P is the ambient pressure equal
to P0 in the absence of sound, and v is the fluid velocity.
For an ideal (nonviscous) fluid, the linearized equation of
state is P = c2

1ρ
′, where c1 is the speed of sound, and ρ′ is

the density that takes care of the acoustic compression of
the medium during the passage of the sound wave. Equa-
tions (1) and (2) can be combined to a single equation for
the velocity v such as:

∂2v
∂t2

= c2
1∇ (∇ · v) . (3)

Assuming that the velocity v can be derived from a scalar
potential ϕ1 such as v = −∇ϕ1, equation (3) can be
rewritten in an equivalent form:

∂2ϕ1

∂t2
= c2

1∇2ϕ1. (4)

Fig. 1. A coated sphere placed in a progressive plane-wave
field incident from the direction θ = π.

Assuming also that the incident field is composed of
monochromatic plane waves, the solutions of equation (4)
are of the form:

ϕ1 (r, θ, t) = Re
[
ϕ1 (r, θ, ω) e−iωt

]
, (5)

where Re indicates the real part of a complex number,
and ϕ1 (r, θ, ω) may be complex. Replacing equation (5) in
equation (4), and after some manipulation, the Helmholtz
equation is obtained:

(∇2 + k2
1

)
ϕ1 = 0, (6)

where the compressional wave number in the fluid
is k1 = ω/c1.

Therefore, the total scalar velocity potential field (so-
lution of Eq. (6)) is the sum of the incident and scattered
fields that can be expressed in spherical coordinates by:

ϕ1 (r, θ) = Φ0

∞∑

n=0

in (2n + 1)
(
jn (k1r)

+ Anh(1)
n (k1r)

)
Pn (cos θ) , (7)

where Φ0 is the amplitude, jn (·) and h
(1)
n (·) are the spheri-

cal Bessel and Hankel functions of the first kind of order n,
respectively, k1 is the wave number in the exterior fluid
medium (medium 1), An are the unknown scattering coef-
ficients that will be determined by the appropriate bound-
ary conditions, and Pn (.) are Legendre polynomials.

The waves inside the layered sphere (media 2 and 3)
will be represented by suitable solutions of the equation
of motion of a solid elastic medium (since no absorption
is included yet), which may be written [15]:

(λ2,3+2µ2,3)∇(∇·U2,3)−µ2,3∇×(∇×U2,3)=ρ2,3
∂2U2,3

∂t2
,

(8)
where λ2,3 and µ2,3 are the Lamé coefficients, and ρ2,3

the mass densities for the covering layer (medium 2) and
core material (medium 3), respectively. U2,3 is the vector
displacement that can be expressed as a sum of the gra-
dient of a scalar potential Φ2,3 and the curl of a vector
potential Ψ2,3 as follows:

U2,3 = ∇Φ2,3 + (∇× Ψ2,3) . (9)
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Using the problem symmetry, the vector potential Ψ2,3

reduces to a scalar equation; i.e. Ψ2,3 = (0, 0, Ψ2,3), and
using the condition ∇·Ψ2,3 = 0, the Helmholtz equations
for the solid medium are obtained as follows:

(∇2 + k2
L,2,3

)
Φ2,3 = 0, (10)

(∇2 + k2
S,2,3

)
Ψ2,3 = 0, (11)

where kL,2,3 = ω
[(λ2,3+2µ2,3)/ρ2,3]1/2

, and kS,2,3 =
ω

[µ2,3/ρ2,3]1/2
, refer to the longitudinal and shear wave num-

bers in the solid media, respectively.
Similarly, the longitudinal and shear waves inside the

layer (medium 2), are represented in spherical coordi-
nates by:

Φ2 (r, θ) = Φ0

∞∑

n=0

in (2n + 1)
(
Bnjn (kL,2r)

+ Cnnn (kL,2r)
)
Pn (cos θ) , (12)

Ψ2 (r, θ) = Φ0

∞∑

n=0

in (2n + 1)
(
Dnjn (kS,2r)

+ Ennn (kS,2r)
)
Pn (cos θ) . (13)

where nn (·) are the spherical Bessel functions of the sec-
ond kind. Sound absorption by the viscoelastic layer is
modeled by introducing complex size parameters (or wave
numbers, respectively), accounting for losses inside the
covering layer. Incorporating complex wave numbers into
the acoustic scattering theory holds only for linear vis-
coelasticity [16]. Here, it is assumed that the normalized
absorption coefficients of compressional and shear waves
are constant quantities independent of frequency.

In the core material (medium 3), the potentials solu-
tion of equations (10) and (11) are given by

Φ3 (r, θ) = Φ0

∞∑

n=0

in (2n + 1)Fnjn (kL,3r)Pn (cos θ) ,

(14)

Ψ3 (r, θ) = Φ0

∞∑

n=0

in (2n + 1)Gnjn (kS,3r)Pn (cos θ) ,

(15)
An, Bn, Cn, Dn, En, Fn, and Gn, are the unknown coeffi-
cients determined from the following boundary conditions:

– At the outside boundary of the coated sphere (in-
terface at medium 1 and 2), the displacements
(velocities) and normal stresses must be continuous
and the tangential stresses must be zero, leading to:

– v
(1)
r

∣
∣
∣
r=c

= −iω U
(2)
r

∣
∣
∣
r=c

;

– σ
(1)
rr

∣
∣
∣
r=c

= σ
(2)
rr

∣
∣
∣
r=c

;

– σ
(2)
rθ

∣
∣
∣
r=c

= 0.

– At the interface between the outer layer and core ma-
terial (interface at medium 2 and 3), the radial and
tangential displacements are continuous, and the ra-
dial and tangential stresses of adjoining materials are
equal:
– U

(2)
r

∣
∣
∣
r=b

= U
(3)
r

∣
∣
∣
r=b

;

– U
(2)
θ

∣
∣
∣
r=b

= U
(3)
θ

∣
∣
∣
r=b

;

– σ
(2)
rr

∣
∣
∣
r=b

= σ
(3)
rr

∣
∣
∣
r=b

;

– σ
(2)
rθ

∣
∣
∣
r=b

= σ
(3)
rθ

∣
∣
∣
r=b

.

The detailed expressions of the velocities, displacements
and stress components are given in Appendix A.

The boundary conditions lead to seven linear equa-
tions. The general solution for An is given by

An =

∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣

λ∗
1 λ12 λ13 λ14 λ15 0 0

λ∗
2 λ22 λ23 λ24 λ25 0 0

0 λ32 λ33 λ34 λ35 0 0
0 λ42 λ43 λ44 λ45 λ46 λ47

0 λ52 λ53 λ54 λ55 λ56 λ57

0 λ62 λ63 λ64 λ65 λ66 λ67

0 λ72 λ73 λ74 λ75 λ76 λ77

∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣

∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣

λ11 λ12 λ13 λ14 λ15 0 0
λ21 λ22 λ23 λ24 λ25 0 0
0 λ32 λ33 λ34 λ35 0 0
0 λ42 λ43 λ44 λ45 λ46 λ47

0 λ52 λ53 λ54 λ55 λ56 λ57

0 λ62 λ63 λ64 λ65 λ66 λ67

0 λ72 λ73 λ74 λ75 λ76 λ77

∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣

, (16)

where λ∗
i and λij are the dimensionless elements of the

determinants given in Appendix B.

2.2 Acoustic radiation force on a layered spherical shell

The general theory of the acoustic radiation force on a
boundary moving with a velocity of the first order was de-
veloped by Yosioka and Kawasima [3] and is expressed as

〈F〉 = −
∫∫

S

[ (
1
2

ρ1

c2
1

〈(
∂ϕ1

∂t

)2
〉

− 1
2
ρ1

〈
|∇ϕ1|2

〉
)

n

+ ρ1 〈(vnn + vtt)vn〉
]

dS, (17)

where ϕ1 is the total field given by equation (7), ρ1 and c1

are the mass density and sound velocity in the exterior
fluid medium (medium 1), respectively, vnn and vtt are
the normal and tangential components of the particle ve-
locity of the boundary, respectively, and the symbol 〈.〉
denotes the time-averaging.

According to Hasegawa and Yosioka [7], in the direc-
tion of wave propagation (z-direction) the value 〈Fz〉 of
the radiation force 〈F〉 is expressed as

〈Fz〉 = 〈Fr〉 + 〈Fθ〉 + 〈Frθ〉 + 〈Ft〉 , (18)
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Table 1. Material parameters used in the numerical calculations.

Material Mass density Compressional Shear Normalized Normalized

Velocity Velocity longitudinal shear

[103 kg/m3] [m/s] [m/s] absorption absorption

γ21 γ22

Gold 19.3 3240 1200 . . . . . .

Stainless Steel 7.9 5240 2978 . . . . . .

Phenolic polymer 1.22 2840 1320 0.0119 0.0257

Mercury 13.6 1407 . . . . . . . . .

Water 1.00 1500 . . . . . . . . .

where

〈Fr〉 = −πc2ρ1

〈∫ π

0

(
∂ϕ1

∂r

)2

r=c

sin θ cos θ dθ

〉

,

〈Fθ〉 = πρ1

〈∫ π

0

(
∂ϕ1

∂θ

)2

r=c

sin θ cos θ dθ

〉

,

〈Frθ〉 = 2πcρ1

〈∫ π

0

(
∂ϕ1

∂r

)

r=c

(
∂ϕ1

∂θ

)

r=c

sin2 θ dθ

〉
,

〈Ft〉 = −πc2ρ1

c2
1

〈∫ π

0

(
∂ϕ1

∂t

)2

r=c

sin2 θ cos θ dθ

〉

. (19)

The final expression of the total force can be repre-
sented by

〈Fz〉 = 〈E〉ScYp, (20)

where 〈E〉 = 1
2ρ1k

2
1 |Φ0|2 is the mean energy density of

the incident plane acoustic wave field, and Sc = πc2 is the
cross-sectional area. Yp is a dimensionless factor called the
radiation force function, which depends on the scattering
and absorption properties of the target and is the radiation
force per unit cross section and unit energy density.

After replacing equation (7) in equation (18) using
equation (19), Yp can be expressed as

Yp = − 4

(k1c)
2

∞∑

n=0

(n + 1) × [
αn + αn+1

+ 2 (αnαn+1 + βnβn+1)
]
, (21)

where αn and βn are real and imaginary parts of the scat-
tering coefficients An defined by equation (16).

3 Numerical results and discussion

In order to illustrate the nature and general behavior of
the solution, a numerical example is considered. The ob-
jective is to display the computed radiation force functions
of the coated sphere as a function of the size parameter
x = k1b. In this case, the outer layer comprises a phe-
nolic polymer, a highly absorbent material, and the core
medium comprises gold material which is considered to
be lossless. Another example is also considered in which

the core material was chosen to be stainless steel. The
materials’ mechanical parameters are listed in Table 1.

Absorption of sound inside the outer covering layer is
incorporated in the theory by introducing complex size pa-
rameters. The normalized absorption coefficients for both
compressional and shear waves are listed in Table 1. The
outer covering layer has a thickness e1 = c/b (see Fig. 1).

Computations for gold and stainless steel spheres cov-
ered by a phenolic polymer were performed over a large
range of frequencies corresponding to 0 ≤ x ≤ 60 with in-
tervals of 0.01. It is very important to choose a sufficiently
small sampling increment since resonance peaks are very
sharp and improper sampling may lead to false curves. It
was verified that by reducing the sampling increment, no
prominent changes were perceived in the curves. It is cru-
cial also to choose a relatively large number in the series
(i.e. Eq. (21)) at least of the same order of x = k1b so as to
ensure a proper convergence. In our case, the number N in
the series was fixed to twice the maximum size parameter
bandwidth (i.e. N = 120).

As an initial test, the calculations were performed
for uncoated (e1 = 1), gold (Fig. 2a) and stainless steel
(Fig. 3a) spheres immersed in water. This was done in
order to compare the results with those of Anson and
Chivers [17] and Hasegawa, et al. [18]. Excellent agree-
ment was found.

In the following, the absorptive behavior of the coating
is investigated and the radiation force function curves were
plotted for different thicknesses of the outer covering, with
and without absorption.

Figures 2b−d display the variation of the radiation
force function for layered gold spheres with and without
absorption. It is obvious here that the (absorptive) coat-
ing affects the resonance frequencies of the metallic sphere.
The main observation is the damping of resonance peaks
when the thickness of the outer covering increases. How-
ever, one notices the enhancement in the radiation force
function curve for a thick absorptive layer while x = k1b
increases (x > 10) (Fig. 2d). This enhancement is also
observed for stainless steel material (Fig. 3d). One im-
portant comment could be said in order to give a full in-
terpretation of this enhancement at high size parameter
values (high x) that is related to sound-energy absorp-
tion; when absorption is strong, the sound-energy den-
sity in the area of the incident plane wave field is high
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Fig. 2. Yp curves for phenolic polymer-coated gold spheres immersed in water for different thicknesses (e1) of the covering layer
with and without absorption. e1 = 1 corresponds to uncoated spheres.

Fig. 3. The same as in Figure 2 but for phenolic polymer-coated stainless steel spheres.
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Fig. 4. The Yp curves for phenolic polymer-coated gold spheres immersed in mercury for different thicknesses of the covering
layer with and without absorption.

compared to the case without absorption. Hence, accord-
ing to equation (20), the net force per cross-section acting
on the coated sphere in the direction of the incident waves
is high, which is confirmed by these results.

Additional calculations were performed in order to
study the fluid-loading effect on the radiation force. Fig-
ures 4b−d show Yp curves for gold coated spheres im-
mersed in a high density fluid (in this case mercury). The
density of gold is higher than that of mercury, and this was
shown to have a minor effect on the radiation force for un-
coated spheres (Fig. 2a versus Fig. 4a). However, as long
as the thickness of the outer covering increases, a series of
resonance peaks tends to disappear (Fig. 4b−d), and the
enhancement in the radiation force function curves ini-
tially observed in Figure 2d (while x increases) has been
removed. However, a low frequency (x < 3) enhancement
in the radiation force function curves is observed. The
main cause is that increased fluid-loading produces inter-
actions between various resonance modes which can have
a significant effect on the modal spectrum of the sphere.
Studies on sound scattering from absorbing cylinders have
shown similar behavior [19].

Figures 5b–d display Yp curves for stainless steel
coated spheres immersed in mercury. By comparing Fig-
ure 3a with Figure 5a, it is obvious that the fluid-loading
drastically changes the radiation force, since the stainless
steel material is known to have a lower density than mer-
cury. The enhancement at low frequency in the radiation
force function curves is still noticeable for this material, es-

pecially when the thickness of the outer covering increases
(Fig. 5d). From these figures, it is concluded that the radi-
ation force is not greatly affected by sound (or ultrasound)
absorption while x increases (x > 10).

The positions of extrema in the figures correspond to
resonance frequencies of the sphere vibrations. A detailed
discussion on whether the resonances are manifested as
either maxima or minima in the Yp curves is very sub-
tle. Whether these resonances appear as dips instead of
peaks in these curves is strongly related to the sphere’s
and coating material mechanical properties, and the sur-
rounding medium. Further studies should seek to identify
each factor that contributes to the acoustic radiation force
separately in order to address that question.

4 Conclusion

In this paper, we have addressed the problem of the
acoustic radiation force on a spherically shaped target.
Although the problem has received intense treatment in
the literature, it has required some additional analysis to
take into account more general fields. This work presents
analytical solutions as well as numerical results for the
acoustic radiation force arising from the interaction of a
plane progressive sound wave with an elastic sphere that
is coated by a viscoelastic sound-absorptive material and
immersed in an inviscid fluid. The prime objective was
to investigate the effect of the outer covering on the ra-
diation force. Moreover, sound absorption by the outer
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Fig. 5. The same as in Figure 4 but for phenolic polymer-coated stainless steel spheres. One notices the high resonance peak
at low frequency (x = 0.88) especially when the thickness of the viscoelastic layer increases (Fig. d).

covering was also examined as well as the fluid-loading ef-
fect. Numerical results reveal the important consequences
of the inclusion of absorption inside the viscoelastic layer,
such as the acoustic radiation force enhancement when the
outer covering thickness increases. Furthermore, the fluid-
loading effect has shown to produce interactions between
various vibrational modes of the layered sphere and alter
the position of their relative resonance peaks or dips, re-
sulting in a low frequency (0 ≤ x ≤ 3) enhancement in the
radiation force function curves. The proposed model leads
to an extension of the standard theory on the acoustic
radiation force experienced by elastic spheres since its rel-
ative results are obtained here by simply allowing e1 = 1.
The results for spherical shells can also be obtained in
a straightforward manner by considering the sphere as a
fluid medium (shear velocity equal to zero) coated by elas-
tic or a viscoelastic layer [20]. A possible application of the
theory is for the estimation of the covering layer thickness
by inverting the problem arising from the radiation force
function curves.

The author is indebted to the editor and anonymous reviewers
for careful reading of the manuscript and for suggestions to
improve its presentation.

Appendix A: Field equations

The basic field equations in spherical coordinates are given
as follows; the velocity component of the wave in the ex-

terior fluid medium is v
(1)
r = −∂ϕ1

∂r , where ϕ1 is given by
equation (7).

Similarly, the displacements expressed in terms of po-
tentials in the layered sphere are:

U (2,3)
r =

∂Φ2,3

∂r
+

1
r sin θ

∂ (Ψ2,3 sin θ)
∂θ

,

U
(2,3)
θ =

1
r

∂Φ2,3

∂θ
− 1

r

∂ (rΨ2,3)
∂θ

,

where Φ2,3 and Ψ2,3 are the scalar and vector potentials
given in equations (12−15).

The stress component in the exterior fluid is σ
(1)
rr =

iωρ1ϕ1, where ρ1 is the exterior fluid mass density, and
the stresses components in the layered sphere are:

σ(2,3)
rr = 2µ2,3

∂U
(2,3)
r

∂r
+ λ2,3 (∇ ·U2,3) ,

σ
(2,3)
rθ = µ2,3

(
1
r

∂U
(2,3)
r

∂θ
+

∂U
(2,3)
θ

∂r
− U

(2,3)
θ

r

)

,

where λ2,3 and µ2,3 are the Lamé coefficients and U2,3 is
the vector displacement (Eq. (9)).

Appendix B: Matrix elements

ρ1 and ρ2 are the mass densities of the fluid surrounding
the sphere and the viscoelastic coating, respectively.
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e1 = c/b where c and b are the outer and inner ra-
dius (Fig. 1). x = k1b; where k1 = ω

c1
and c1 is the

sound velocity in the fluid medium, x̃21 = x c1
c21

(1 + iγ21)
and x̃22 = x c1

c22
(1 + iγ22) where c21 and c22 are the com-

pressional and shear sound velocities in the viscoelastic
layer and γ21 and γ22 their corresponding absorption co-
efficients (Tab. 1), respectively, x31 = x c1

c31
and x32 = x c1

c32

where c31 and c32 are the compressional and shear sound
velocities in the core material, respectively. y1 = xe1,
ỹ21 = x̃21e1, ỹ22 = x̃22e1, y31 = x31e1, y32 = x32e1

and Λ23 = ρ2
ρ3

(
c22
c32

)2

, where ρ3 is the core material mass
density.

The following terms are the expressions for the ele-
ments of determinants appearing in equation (16)

λ11 =
ρ1

ρ2
ỹ2
22h

(1)
n (y1) ,

λ12 =
(
2n (n + 1) − ỹ2

22

)
jn (ỹ21) − 4ỹ21j

′
n (ỹ21) ,

λ13 =
(
2n (n + 1) − ỹ2

22

)
nn (ỹ21) − 4ỹ21n

′
n (ỹ21) ,

λ14 = 2n (n + 1) (ỹ22j
′
n (ỹ22) − jn (ỹ22)) ,

λ15 = 2n (n + 1) (ỹ22n
′
n (ỹ22) − nn (ỹ22)) ,

λ21 = −y1h
(1)′
n (y1) ,

λ22 = ỹ21j
′
n (ỹ21) ,

λ23 = ỹ21n
′
n (ỹ21) ,

λ24 = n (n + 1) jn (ỹ22) ,

λ25 = n (n + 1)nn (ỹ22) ,

λ32 = 2 (jn (ỹ21) − ỹ21j
′
n (ỹ21)) ,

λ33 = 2 (nn (ỹ21) − ỹ21n
′
n (ỹ21)) ,

λ34 = 2ỹ22j
′
n (ỹ22) +

(
ỹ2
22 − 2n (n + 1) + 2

)
jn (ỹ22) ,

λ35 = 2ỹ22n
′
n (ỹ22) +

(
ỹ2
22 − 2n (n + 1) + 2

)
nn (ỹ22) ,

λ42 = x̃21j
′
n (x̃21) ,

λ43 = x̃21n
′
n (x̃21) ,

λ44 = n (n + 1) jn (x̃22) ,

λ45 = n (n + 1)nn (x̃22) ,

λ46 = −x31j
′
n (x31) ,

λ47 = −n (n + 1) jn (x32) ,

λ52 = −jn (x̃21) ,

λ53 = −nn (x̃21) ,

λ54 = −x̃22j
′
n (x̃22) − jn (x̃22) ,

λ55 = −x̃22n
′
n (x̃22) − nn (x̃22) ,

λ56 = jn (x31) ,

λ57 = x32j
′
n (x32) + jn (x32) ,

λ62 = Λ23

((
2n (n + 1) − x̃2

22

)
jn (x̃21) − 4x̃21j

′
n (x̃21)

)
,

λ63 = Λ23

((
2n (n + 1) − x̃2

22

)
nn (x̃21) − 4x̃21n

′
n (x̃21)

)
,

λ64 = 2n (n + 1)Λ23 (x̃22j
′
n (x̃22) − jn (x̃22)) ,

λ65 = 2n (n + 1)Λ23 (x̃22n
′
n (x̃22) − nn (x̃22)) ,

λ66 = 4x31j
′
n (x31) −

(
2n (n + 1) − x2

32

)
jn (x31) ,

λ67 = 2n (n + 1) (jn (x32) − x32j
′
n (x32)) ,

λ72 = 2 (jn (x̃21) − x̃21j
′
n (x̃21)) ,

λ73 = 2 (nn (x̃21) − x̃21n
′
n (x̃21)) ,

λ74 = 2x̃22j
′
n (x̃22) +

(
x̃2

22 − 2n (n + 1) + 2
)
jn (x̃22) ,

λ75 = 2x̃22n
′
n (x̃22) +

(
x̃2

22 − 2n (n + 1) + 2
)
nn (x̃22) ,

λ76 =
2

Λ23
(x31j

′
n (x31) − jn (x31)) ,

λ77 = − 1
Λ23

(
2x32j

′
n (x32) +

(
x2

32 − 2n (n + 1) + 2
)
jn (x32)

)
,

λ∗
1 = −ρ1

ρ2
ỹ2
22jn (y1) ,

λ∗
2 = y1j

′
n (y1) .
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